In bloodstream, insulin lowers blood glucose levels. It

In this lesson, we’ll look at how the body uses hormones to maintain homeostasis of blood glucose levels, what happens in people who have diabetes, and how diabetics can manage their disease.

Homeostasis

According to the Centers for Disease Control and Prevention, there are almost 26 million people in the United States alone that have diabetes, which is 8.

Our Authors Write a Custom Essay
For Only $13.90/page!


order now

3% of the total U.S. population. With so many Americans suffering from diabetes, how do we treat all of them? Do all of these people now need insulin shots, or are there other ways to treat, or prevent, diabetes? In order to answer these questions, we must first understand the fundamentals of blood glucose regulation.

As you may remember, homeostasis is the maintenance of a stable internal environment within an organism, and maintaining a stable internal environment in a human means having to carefully regulate many parameters, including glucose levels in the blood. There are two major ways that signals are sent throughout the body. The first is through nerves of the nervous system. Signals are sent as nerve impulses that travel through nerve cells, called neurons. These impulses are sent to other neurons, or specific target cells at a specific location of the body that the neuron extends to. Most of the signals that the human body uses to regulate body temperature are sent through the nervous system.

The second way that signals can be sent throughout the body is through the circulatory system. These signals are transmitted by specific molecules called hormones, which are signaling molecules that travel through the circulatory system. In this lesson, we’ll take a look at how the human body maintains blood glucose levels through the use of hormone signaling.

Homeostasis of Blood Glucose Levels

Glucose is the main source of fuel for the cells in our bodies, but it’s too big to simply diffuse into the cells by itself. Instead, it needs to be transported into the cells. Insulin is a hormone produced by the pancreas that facilitates glucose transport into cells. By facilitating glucose transport into cells from the bloodstream, insulin lowers blood glucose levels.

It also inhibits glucose production from amino acids, fatty acids and glycogen which, you may remember, is a carbohydrate composed of many glucose subunits.In fact, insulin actually stimulates glycogen formation from glucose. All of these functions of insulin help to lower glucose levels in the blood. But insulin isn’t the only hormone that regulates glucose levels in the blood. Glucagon is a hormone produced by the pancreas that raises blood glucose levels by stimulating the breakdown of glycogen into glucose, stimulating glucose production from amino acids and fatty acids, and stimulating the release of glucose from the liver. Glucagon and insulin have antagonistic effects, with glucagon promoting glucose production and release into the bloodstream, and insulin promoting the transport of glucose into cells from the bloodstream and inhibiting glucose production.Glucose levels in the blood are usually measured in terms of milligrams per deciliter (mg/dl), with a normal range of 70 to 110 mg/dl.

Generally speaking, if glucose levels stray out of this range, the amounts of insulin and glucagon produced by the pancreas will be adjusted to bring glucose levels back into this range. It should be noted here that insulin and glucagon signaling are not all-or-nothing responses in normal individuals. When the system is functioning properly, there is always some insulin and some glucagon being produced by the pancreas that is trying to find a balance between glucose release into the blood, and glucose uptake into cells.

This chart shows the concentrations of glucose, insulin, and glucagon in the blood, both before and after a meal that is high in carbohydrates. You may remember that carbohydrates are broken down into monosaccharides, like glucose, before they are absorbed into the bloodstream by the small intestine. In this graph, the black line is glucose, the blue line is insulin, and the red line is glucagon.

Chart showing how glucose and insulin levels spike together after a high carb meal
This is what insulin levels might look like for type I diabetes.
Chart showing glucose and insulin levels for type I diabetes

People with type I diabetes cannot produce insulin, and must receive frequent insulin injections. They also must carefully regulate when and what they eat, and monitor their blood glucose levels closely.

If they do not, their blood glucose levels could easily fall too low or rise too high. In either case, the person could then suffer a diabetic reaction and become confused or behave irrationally. If left untreated, the person could become comatose and die.

Type I diabetics are insulin-dependent and must monitor their blood glucose levels closely.
Type I and Type II diabetes

Type II diabetes is also known as adult-onset or non-insulin-dependent diabetes, and usually occurs when a person’s cells become resistant to the effects of insulin.

Type II diabetes develops over a long period of time, and accounts for over 90% of all diabetes cases in the US. There is no single known cause of type II diabetes. Instead, there are several well-documented risk factors, including genetics, obesity, high blood pressure, high cholesterol levels, and a sedentary lifestyle.

The good news for type II diabetics is that exercise increases cell sensitivity to insulin. Because of this, type II diabetes can often be managed through diet and exercise, and sometimes, it can even be reversed if some of the underlying risk factors are eliminated.So, to answer the question at the beginning of this lesson, most people with diabetes do not need insulin shots, but all diabetes should carefully monitor what they eat. And the best treatment for type II diabetes is a healthy diet and exercise.

Lesson Summary

So, in review, hormones are signaling molecules that travel through the circulatory system. There are lots of different hormones in the human body that serve lots of different functions, but some are used to maintain homeostasis of various physiological parameters, like blood glucose levels.Blood glucose levels are regulated by two opposing hormones: insulin and glucagon.

Insulin is a hormone produced by the pancreas that facilitates glucose transport into cells. Insulin also inhibits glucose production from amino acids, fatty acids, and glycogen. All of these functions of insulin help to lower glucose levels in the blood. Opposing these blood glucose-lowering actions is glucagon, which is a hormone produced by the pancreas that raises blood glucose levels by stimulating the breakdown of glycogen into glucose, stimulating glucose production from amino acids and fatty acids, and stimulating the release of glucose from the liver.Diabetes is a disease where people have trouble regulating their blood glucose. When diabetes is caused by an absence of insulin-producing cells, the person cannot make insulin, and therefore must have regular insulin injections to regulate glucose levels and make sure that their cells can import glucose from the blood. This type of diabetes is called type I, or insulin-dependent diabetes.

However, most cases of diabetes in the United States aren’t caused by a lack of insulin. Instead, these cases are a result of cells becoming insulin-resistant, meaning that they do not respond to normal concentrations of insulin. These people have type II, or non-insulin-dependent diabetes, and they also have difficulty lowering blood glucose levels. But they don’t need insulin. Instead, these people must increase the sensitivity of their cells to insulin through diet and exercise. The good news for type II diabetics is that with a healthy diet and exercise, many cases of type II diabetes are reversible.

Key Terms

Hormones, sent through the circulatory system, help the body to maintain its blood glucose levels.
The circulatory system
  • Homeostasis: the maintenance of a stable internal environment within an organism
  • Hormones: signaling molecules produced to send messages to the body through the circulatory system
  • Glucose: the main source of fuel for the cells
  • Insulin: hormone that facilitates the transport of glucose to cells
  • Glucagon: hormone produced by the pancreas to raise blood glucose levels
  • Type I diabetes: referred to as juvenile-onset or insulin dependent diabetes
  • Type II diabetes: also called adult-onset or non-insulin dependent diabetes

Learning Outcomes

Decide whether you can achieve the following goals after this lesson ends:

  • Interpret the process of homeostasis
  • Understand the body’s use of glucagon and insulin to maintain homeostasis
  • Highlight the two types of diabetes and discuss ways in which they are controlled
x

Hi!
I'm Sigvald

Do you need a custom essay? How about ordering an essay here?

Check it out