Watch with a stack of mail in his

Watch this video lesson to see how Euler paths and circuits are used in the real world.

Learn how to solve real-world problems by drawing a graph and finding Euler paths and circuits.

Our Authors Write a Custom Essay
For Only $13.90/page!

order now

Euler Paths and Circuits

In this video lesson, we are going to see how Euler paths and circuits can be used to solve real-world problems. You will see how the mailman and the salesman make use of these paths and circuits. You will also be presented with a seemingly complex problem to see if such a feat is possible.

Keep watching!First, let’s quickly review what we know of Euler paths and circuits. An Euler path is a path in a graph where each edge is crossed exactly once. An Euler path can have any starting point with a different end point.

A graph with an Euler path can have either zero or two vertices that are odd. The rest must be even.An Euler circuit is a circuit in a graph where each edge is crossed exactly once. The start and end points are the same. All vertices must be even for the graph to have an Euler circuit.

Let’s get on with the problems now.

Delivering the Mail

Our first problem deals with delivering the mail. Imagine our postman with a stack of mail in his hand. He needs to deliver this mail to addresses on five different streets. He looks on the map, and he sees how the roads connect with each other. He draws a simplified version of the map. He marks each intersection with a number.

Since he has a car, he would like to end at the same point where he began.

Euler model

To make the best use of his time, he needs to walk each road just once. Can he do so and if so, how?Looking at his graph, we see that yes, it is possible to walk each road just once. He can park his car at intersection one, walk to intersection two, then three, then four, then five, and then back to one. Doing this, he will have walked each road only once. Since he ended up where he began, he actually walked an Euler circuit.

Are there other ways he could have done an Euler circuit? Yes. There are actually ten different Euler circuits he could have taken. He could have started at point one, gone to point five, then four, three, two, and then back to one again. He can actually begin at any one of the points and go either way.

We have five points and two ways to go from each point. This makes for a total of ten possible routes he could have taken; ten possible Euler circuits.

The Traveling Salesman

Now, let’s look at the traveling salesman problem. His is similar to the postman’s.

Since our salesman travels, he doesn’t mind ending up at a different point from where he began. But just like the postman, he wants to make best use of his time and travel each road just once. This salesman did what the postman did and drew a simplified version of the roads he wants to travel.

Euler model

He also has five roads to reach. Can he go through all five roads just once? Yes, he can. If he begins at point three, he can then go to point two, one, five, four, and then one again.

He will have visited all five roads just once. Since he ended up at a different spot from where he began, he has traveled an Euler path. Are there more Euler paths that our salesman could have taken? Yes, there are.

Can you spot them?

The Seven Bridges of Konigsberg

This last example is a tricky one. This was actually a problem posed to the mathematician Leonhard Euler back in the 1700s. Recognize the name? Yes, this problem solved by the mathematician Leonhard Euler is where our study of graph theory began.

Hence, we have the name Euler paths and Euler circuits named after this mathematician. Are you ready for this problem? Okay. Here it is.

Map of Konigsberg
Euler model

Here we have a map of Konigsberg and its seven bridges back in the 1700s. The problem posed to Euler was that of being able to visit all the bridges but crossing each bridge only once. Yes, we are looking for an Euler path or an Euler circuit. How can we go about solving this problem? We can begin by making a simplified graph of our bridges. We will mark each land area as a point.

After car at one intersection, walk the route
  • In his problem. He needs to know how
  • After A Graph The graphs that you see
  • In through the smaller, more restrictive pipes just
  • After He wants to let people know about
  • Mathematical L * W (P is perimeter,
  • x

    I'm Sigvald

    Do you need a custom essay? How about ordering an essay here?

    Check it out